Microsoft Fabric Updates Blog

Semantic Link: OneLake integrated Semantic Models

Semantic Link adds support for the recently released OneLake integrated semantic models! You can now directly access data using your semantic model’s name via OneLake using the read_table function and the new mode parameter set to onelake. This approach ensures that no load is placed on Analysis Services, enabling efficient data retrieval and avoids putting additional load on your Power BI capacity.

Optimized access of OneLake integrated semantic models

When using the onelake mode, the data is read directly from the delta tables in OneLake, which are kept up to date with the semantic model. This enables seamless access to the data for various data consumers without the need for additional ETL pipelines or data copying. Here’s a code snippet using the read_table function with onelake mode to read the customer table in the Adventure Works semantic model:

Programmatic export of data can be triggered using the new execute_tmsl function. This Python function allows you to run Tabular Model Scripting Language (TMSL) commands to export the data from your semantic model. Please note that XMLA read/write needs to be enabled for the semantic model.

Here’s a code snippet for triggering the programmatic export using the execute_tmsl:

Don’t miss out on the power of semantic link in Microsoft Fabric! Leverage the seamless integration between semantic models and Synapse Data Science to unlock the full potential of your data.

Related blog posts

Semantic Link: OneLake integrated Semantic Models

April 16, 2024 by Ruixin Xu

We are pleased to share a set of key updates regarding the Copilot in Microsoft Fabric experiences. The information in this blog post has also been shared with Fabric tenant administrators. Below are the highlights of the changes. This change is an important milestone to eventually allow Copilot to reach GA within this year. See … Continue reading “Copilot in MS Fabric: Soon available to more users in your organization“

April 15, 2024 by Santhosh Kumar Ravindran

Users orchestrate their data engineering or data science processes using notebooks and in most of the enterprise scenarios pipelines and job schedulers are used as a primary option to schedule and trigger these Spark jobs. We are thrilled to announce a new feature Job Queueing for Notebook Jobs in Microsoft Fabric. This feature aims to … Continue reading “Introducing Job Queueing for Notebook in Microsoft Fabric”