Microsoft Fabric Updates Blog

Explore Data Transformation in Eventstream for KQL Database Integration

At Microsoft Ignite this year, we were thrilled to announce the General Availability of Eventstream. One of the exciting features is Eventstream’s real-time processing tailored for seamless integration with the KQL Database. This feature ensures a smooth experience for ingesting and transforming data streams into your KQL table.

In this blog post, we’ll dive into a practical scenario using real-world bike-sharing data and learn to compute the number of bikes rented every minute on each street. You’ll gain hands-on experience using Eventstream’s powerful event processor, mastering real-time data transformations, and effortlessly directing the processed data to your KQL Database.

Prerequisites

  • Access to a premium workspace in Fabric with Contributor or above permissions.
  • A KQL Database created in your workspace.

Step 1: Create an eventstream and add sample bike data

1. Switch your Power BI experience to Real-time Analytics and select the Eventstream to create a new one. Name your Eventstream e.g. “eventstream-1”.

2. On the Eventstream canvas, expand New source and select Sample data. Give a name to the source and select Bicycles as the sample data.

3. Preview the data in eventstream to verify if the sample bike data is added successfully.

Here’s the description of the columns:

ColumnsDescription
BikepointIDID for the bike docking point
StreetName of the street where the dock is located
NeighbourhoodNeighbourhood where the dock is located
LatitudeLatitude of the docking point
LongitudeLongitude of the docking point
No_BikesNumber of bikes currently rented
No_Empty_DocksNumber of available empty docks at the docking point

Step 2: Add a KQL destination with the event processor

1. On the Eventstream canvas, expand the New destination drop-down menu and choose KQL Database.

2. Data ingestion mode. There are two ways of ingesting data into the KQL Database:

  • Direct ingestion: Ingest data directly to a KQL table without any transformation.
  • Event processing before ingestion: Transform the data with the Event Processor before sending it to a KQL table.

 Note: You CANNOT edit the ingestion mode after the KQL destination is added to the eventstream.

Select Event processing before ingestion and enter the necessary details of your KQL Database.

3. Scroll down the right panel and select Open event processor, this action opens a no-code editor allowing you to add real-time operations to your data streams.

4. On the editor, add a Group by operation between the Eventstream and the KQL Database. We want to calculate the number of bikes rented every minute on each street. Therefore under the Aggregation section, we select SUM for the aggregation and No_Bikes for the field.

5. Further down in the Settings section, select Street for the “Group aggregation by”, choose Tumbling for the “Time window”, and enter 1 Minute for the “Duration”. Then Save the Group by configuration.

6. Back to the editor, select the Group by operation, and preview the processing result to make sure the operation is configured successfully. Then select Save to close the Event processor.

7. Finally, select Add to finish the configuration for the KQL database destination.

Step 3: View result in the KQL table

1. On the Eventstream canvas, select the KQL destination, and select Open item to access your KQL Database.

2. Within the KQL database interface, locate the bike-count table. Select the Query table and choose Show any 100 records. This action opens the right panel, allowing you to examine the last 100 records of the table. Here, you can observe the detailed count of bikes rented on each street, minute by minute.

Congratulations!

You successfully completed the tutorial on exploring and transforming bike-sharing data using Eventstream. Keep exploring Eventstream’s capabilities and continue your journey with real-time data processing.

Entradas de blog relacionadas

Explore Data Transformation in Eventstream for KQL Database Integration

julio 10, 2025 por Matthew Hicks

Effortlessly read Delta Lake tables using Apache Iceberg readers Microsoft Fabric is a unified, SaaS data and analytics platform designed for the era of AI. All workloads in Microsoft Fabric use Delta Lake as the standard, open-source table format. With Microsoft OneLake, Fabric’s unified SaaS data lake, customers can unify their data estate across multiple … Continue reading “New in OneLake: Access your Delta Lake tables as Iceberg automatically (Preview)”

junio 25, 2025 por Misha Desai

We’re excited to introduce Data Source Instructions, a powerful new feature in the Fabric Data Agent that helps you get more precise, relevant answers from your structured data. What are Data Source instructions? When you use the Data Agent to ask questions in natural language, the agent must determine which data source to use and … Continue reading “New in Fabric Data Agent: Data source instructions for smarter, more accurate AI responses”